skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whitman, Julian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Snake robots have the potential to locomotethrough tightly packed spaces, but turning effectively withinunmodelled and unsensed environments remains challenging.Inspired by a behavior observed in the tiny nematode wormC.elegans, we propose a novel in-place turning gait for elongatedlimbless robots. To simplify the control of the robots’ many in-ternal degrees-of-freedom, we introduce a biologically-inspiredtemplate in which two co-planar traveling waves are superposedto produce an in-plane turning motion, theomega turn. Theomega turn gait arises from modulating the wavelengths andamplitudes of the two traveling waves. We experimentally testthe omega turn on a snake robot, and show that this turninggait outperforms previous turning gaits: it results in a largerangular displacement and a smaller area swept by the bodyover a gait cycle, allowing the robot to turn in highly confinedspaces. 
    more » « less